N Nerrzo Infra Solutions

PPE

GOPHISH

CAMPAGNE DE SENSIBILITATION

Presenter par
MOCQUILLON
Lucas

Dossier Technique —
Infrastructure GoPhish
(Lab Local = Entreprise)

Auteur : MOCQUILLON Lucas— Apprenti Administrateur Systémes, Réseaux & Sécurité

Date : 28 janvier 2026

Contexte : Projet de sensibilisation au phishing avec I’outil open source GoPhish, d’abord en
environnement local (homelab / BTS), puis réutilisation dans un contexte réel.

Table des matiéres

SR D10 5o 6 1[0 o) s DU SRR 3
2, Cahier deS ChATZES.....uieieeieeiecieeteetce ettt e et e ee e ae e s e e se s se e ae e se s seesseesseessennsenans 4
3. ATCHILECTUTE CIDIE.....ueiiiieeeeieiceeee ettt et ecesbe e e eeabeeeeesssaeeseessreeesenssseessnnnes 5
4. Mise en place de I'infrastructure 10Cale.........ccueeveeeeeciercerceereeeeee e 7
4.1. Préparation des machines virtuelles...........ccceevveeveeeceiceenieeieeeeeeee e 7
4.2. Installation de GOPRISI.........cooueiiiiiiiieceeeeeceeee et cee e e et e e e eeasneeeeennes 8
4.3. Mise en place du reverse proxy Nginx + HTTPS........cccceceeieierieenieseerieeeeseeeeeseeeeesaeenns 9
4.4. Mise en place du serveur SMTP Postfix (1ab)......cccceeeviereiercierieeieeceeeeeee e, 10
4.5. Mise en place du DNS 10CAL........ccceieuiieierierceeeieeeee et se e ae s e e e e seesreessnesnneens 11
4.6. Configuration GOPhish (interface)........ccceeveeeieerereeieieeceeseeeteee e 12
BB VL) 1 Te: 10 T0) o <) B 1] £ R 13
5. Anticipation des problémes pour la future mise en production..........ccceceeeeeeeeveeereeeceeeceennnen. 14
5.1. Problémes techniques fréQUENTS.........ceeceeeieeceeceeeieee e ee e e ae e 14
6. Cadre éthique de l1a sensibilisSation........ccccceeeieecieeiieiieeeeeeee e 15
72 070} s 161 1153 (o) o FER SRR 16
RETETEIICES.enveuieietieieetecteete ettt sttt et et e e st et e b e s s st et e s s e s st et e sbesseentebessesseensensessesneensens 16

2/16

1. Introduction

1.1. Contexte général

Le phishing (hamegonnage) reste aujourd’hui I'un des vecteurs d’attaque les plus utilisés par les
cybercriminels. Une grande majorité des cyberattaques ciblant les organisations commence par un
courriel de phishing, visant a obtenir des identifiants, des données sensibles ou a faire exécuter un
code malveillant par I'utilisateur.

Les protections techniques (antivirus, filtrage web, pare-feu, EDR, etc.) sont nécessaires mais ne
suffisent plus : 'utilisateur final est souvent le dernier rempart. La sensibilisation et la formation
deviennent donc des composants essentiels de la sécurité globale.

Dans ce contexte, I'outil GoPhish est utilisé comme framework de simulation de phishing pour :

e Concevoir des scénarios réalistes (e-mails + pages d’atterrissage).
e Lancer des campagnes de test auprés de collaborateurs.
e Mesurer les comportements : ouverture des mails, clics, saisies éventuelles.

e Débriefer et transformer les erreurs en apprentissage.

1.2. Objectif du projet

L’objectif du projet est de concevoir, déployer et documenter une infrastructure compléte
permettant :

e De tester GoPhish dans un environnement local isolé (homelab/école) en toute sécurité.

e De préparer la montée en charge vers une campagne de sensibilisation destiné a des
étudiant de I'école Saint Félix la salle.

e De rester 100 % sur des composants gratuits / open source.

e D’anticiper les principaux problémes techniques (DNS, SMTP, SPF/DKIM, HTTPS),
organisationnels (validation RSSI) et juridiques (RGPD, éthique).

Ce dossier technique doit pouvoir servir de base a une mise en production controlée.

1.3. Présentation de GoPhish

GoPhish est un framework open source de simulation de phishing, développé en Go, et distribué
sous licence MIT.

Fonctionnalités principales :

e Interface web d’administration.
e C(Création de templates d’e-mails.
e (Création de landing pages (pages web d’atterrissage).

e Gestion des listes de cibles.

3/16

e Gestion des campagnes (lancement, suivi, statistiques en temps réel).
e Export des résultats.

GoPhish ne fournit pas de serveur SMTP intégré : il doit étre associé a un relais de messagerie (local
ou externe), ce qui impose de réfléchir a I'architecture mail (Postfix, Exchange, service cloud, etc.).

2. Cahier des charges

2.1. Besoins fonctionnels
e Permettre la création et I'envoi de campagnes de phishing depuis une interface web
GoPhish.

e Pouvoir envoyer des e-mails vers des boites aux lettres de test (environnement local) puis
vers des boites professionnelles (en environnement entreprise).

e Proposer des landing pages pédagogiques montrant les indices de phishing apres clic, sans
jamais voler de mots de passe réels.

e Fournir des statistiques détaillées : e-mails délivrés, ouverts, clics, données saisies (optionnel
et encadré).

e Permettre la configuration de scénarios variés (alerte mail, note RH, mise a jour de sécurité,
etc.).

2.2. Besoins techniques

e Infrastructure hébergée dans un homelab type Proxmox / pfSense, sur réseau isolé.

e Utilisation de systémes Linux Debian/Ubuntu pour les serveurs.

e Utilisation de Docker pour I'exécution de GoPhish (facilite la mise a jour et la portabilité).
e Mise en place d’un reverse proxy Nginx pour publier GoPhish en HTTPS.

e Mise en place d’un serveur SMTP Postfix comme relais pour I'envoi des mails de test.

e Configuration d’'un DNS local pour les noms de domaine utilisés dans les scénarios.

e Compatibilité avec une future intégration dans I'infrastructure en condition réel. (Exchange,
DNS publics, etc.).

2.3. Contraintes

e Utiliser uniguement des solutions gratuites / open source.
o Ne pas impacter la production réelle durant la phase de test en local.

e Limiter I'exposition de la plateforme vers Internet (filtrage firewall, DMZ, segmentation
réseau).

e Respecter les contraintes RGPD et I'éthique de la sensibilisation : transparence, absence de
collecte abusive, données minimisées, suppression aprés débriefing.

4/16

3. Architecture cible

3.1. Architecture logique en environnement local (Lab)
Réseau de lab type : 192.168.6.0/24 (LAN homelab).

Composants :
e VM “GoPhish”

o OS:Debian 12 ou Ubuntu Server LTS.
o Services:
= Docker + container GoPhish.
= Nginx en reverse proxy HTTP/HTTPS.
o 1P:192.168.6.20.
e VM “SMTP/Postfix” (optionnel si on sépare)

o OS:Debian 12.
o Service : Postfix (relais SMTP local).
o 1P:192.168.6.21.

e DNS interne (Bind9 ou pfSense)

o Résolution des noms :

= phishing.lab - landing pages GoPhish.

= admin.phishing.lab = interface d’administration GoPhish.
o Permet d’éviter |'utilisation d’IP brutes dans les liens.

e Clients de test

o VMs Windows 10/11.

o Client mail : Outlook, Thunderbird ou webmail interne.

5/16

Schéma logique (simplifié) :

pfSense (Firewall / GW)

VM GoPhish VM SMTP Clients Win
192.168.6.20 192.168.6.21 192.168.6.x
Nginx + Postfix Mail clients

Docker ::: Iﬁil!sz!!EE!
=

3.2. Architecture envisagée en production (entreprise)

En production la méme logique peut étre adaptée :

e Hébergement sur un VPS (Oracle Cloud Free Tier, par exemple) ou en DMZ de I'entreprise.
e Nom de domaine public dédié :
o Exemple : sensibilisation.entreprise.fr.
e GoPhish + Nginx sur une VM Linux.
e Relais SMTP :

o Soit via le serveur de messagerie interne (Exchange/Office 365) avec régles
adaptées.

o Soit via un serveur SMTP dédié.
e Configuration DNS publique + enregistrements SPF, DKIM, DMARC.

L’architecture locale sert alors de maquette fonctionnelle pour préparer le passage en production.

6/16

4. Mise en place de I'infrastructure locale
4.1. Préparation des machines virtuelles

4.1.1. Paramétrage Proxmox (ou équivalent)

e C(Création de deux VMs :

o VM GoPhish::
= 2vCPU, 4 Go RAM, 40 Go disque.
= OS:Debian12.
o VMSMTP:
= 1vCPU, 2 Go RAM, 20 Go disque.
= OS:Debian12.
e Chaque VM est raccordée au réseau virtuel correspondant au LAN de lab (vmbr0, par
exemple).
4.1.2. Configuration réseau statique
Exemple pour la VM GoPhish (Debian 12) via Netplan :

addresses: [192.168.6.1, 8.8.8.8]

Commande d’application :

sudo netplan appl

Méme principe pour la VM SMTP (ex. 192.168.6.21).

4.1.3. Mise a jour et paquets de base
Sur chaque VM :

sudo apt update && sudo apt upgrade -y
sudo apt install -y wget curl unzip vim

7/16

4.2. Installation de GoPhish

Deux approches possibles : installation directe ou via Docker. Nous privilégions Docker pour la
portabilité.

4.2.1. Installation directe (binaire)

Documentation officielle : GoPhish User Guide — Installation.

sudo unzip gophish-v0.12.1-linux-64bit.zip|
sudo chmod +x gophish|

Lancement de test :

sudo ./gophish

Par défaut :

e Interface admin : https://localhost:3333.
e Serveur “phishing” : http://localhost:80.

Les identifiants sont affichés lors du premier démarrage.

4.2.2. Installation via Docker (recommandée)
1. Installer Docker :

sudo apt install -y docker-compose]
sudo systemctl enable --now docker

2. Créer un répertoire dédié :

sudo mkdir -p /opt/gophish
cd /opt/gophish

3. Exemple de docker-compose.yml minimal :

8/16

http://docker.io/
https://github.com/gophish/gophish/releases/download/v0.12.1/gophish-v0.12.1-linux-64bit.zip
https://github.com/gophish/gophish/releases/download/v0.12.1/gophish-v0.12.1-linux-64bit.zip

restart: unless-stopped

4. Lancer GoPhish :
sudo docker-compose up -d

GoPhish est alors accessible en local sur https://VM:3333 (admin) et http://VM:80 (phishing).

4.3. Mise en place du reverse proxy Nginx + HTTPS

L’objectif est de publier GoPhish :

e En HTTPS (pour éviter les alertes de sécurité).

e Sous des noms de domaine lisibles (phishing.lab, admin.phishing.lab).

4.3.1. Installation de Nginx
Sur la VM GoPhish :

sudo apt install -y ngin
sudo systemctl enable --now nginx
4.3.2. Génération de certificats TLS

e En environnement local : utilisation d’un outil comme mkcert (certificats non publics, mais
reconnus par les postes du lab).

o En production : utilisation de Let’s Encrypt via Certbot. [

Exemple (production) :

sudo apt install -y certbot python3-certbot-nginx
sudo certbot --nginx -d phishing.lab -d admin.phishing.lab|

4.3.3. Configuration Nginx

Fichier /etc/nginx/sites-available/gophish :

listen 443 ssl http2;
server_name phishing.lab;

9/16

ss|_certificate /etc/letsencrypt/live/phishing.lab/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/phishing.lab/privkey.pem;

proxy_pass http://127.0.0.1:80; # serveur phishing GoPhish
proxy_set_header Host Shost;
proxy_set_header X-Real-IP Sremote_addr;

server_name admin.phishing.lab;

ssl_certificate /etc/letsencrypt/live/phishing.lab/fullchain.pem;

ssl_certificate_key /etc/letsencrypt/live/phishing.lab/privkey.pem;

location / {
proxy_pass http://127.0.0.1:3333; # interface admin GoPhish
proxy_set_header Host Shost;
proxy_set_header X-Real-IP Sremote_addr;

Activation :

sudo In -s /etc/nginx/sites-available/gophish /etc/nginx/sites-enabled/gophish

sudo systemctl reload ngin

4.4. Mise en place du serveur SMTP Postfix (lab)

La VM SMTP fournit un relais local pour I'envoi d’e-mails de test.

4.4.1. Installation de Postfix

Pendant I'installation, choisir :

e Type de configuration : Site Internet (ou équivalent).

e Nom de courrier : lab.local (par exemple).

10 /16

4.4.2. Configuration de base

Editer /etc/postfix/main.cf pour limiter le relais au réseau du lab :

myhostname = smtp.lab.local
mydomain = lab.local

myorigin = Smydomain

inet_interfaces = all

mynetworks = 127.0.0.0/8 192.168.6.0/24

relay_domains = Smydomain

smtpd_recipient_restrictions = permit_mynetworks, reject_unauth_destination

Redémarrage :

4.4.3. Ajout de DKIM (préparation prod)

Méme si ce n’est pas critique en lab, il est utile de préparer la configuration DKIM.

Installation :

sudo apt install -y opendkim opendkim-tools|

Génération des clés :

sudo opendkim-genkey -t -s mail -d lab.local
sudo chown opendkim:opendkim mail.private

Configuration de opendkim.conf et lien avec Postfix, puis création de I'enregistrement DNS TXT
correspondant (clé publique).

4.5. Mise en place du DNS local

Le DNS local permet aux clients de résoudre les noms utilisés pour GoPhish.

4.5.1. Bind9

Installation :

sudo apt install -y bind9

Fichier /etc/bind/named.conf.local :

zone "lab.local" {

file "/etc/bind/db.lab.local";

11/ 16

Fichier /etc/bind/db.lab.local (exemple minimal) :

STTL 86400
@ IN SOA ns.lab.local. admin.lab.local. (
2026012801 ; Serial

86400) ; Negative Cache TT

@ IN NS ns.lab.local.

ns IN A 192.168.6.20
phishing IN A 192.168.6.20
admin IN A 192.168.6.20
smtp IN A 192.168.6.21
Redémarrer :

sudo systemctl restart bind9

Configurer les clients pour utiliser ce DNS (via parfeu ou manuellement).

4.6. Configuration GoPhish (interface)

Une fois GoPhish et Nginx en place, accéder a :

e Interface admin : https://admin.phishing.lab

e Login/mot de passe : ceux fournis (ou modifiés) au premier démarrage.

4.6.1. Configuration générale

e Modifier I'URL de base (base URL) pour correspondre au domaine réel utilisé (ex.
https://phishing.lab).

e Configurer les Sending Profiles (profils d’envoi) en pointant vers le serveur SMTP
(smtp.lab.local ou 192.168.6.21).

e Créer des groupes de cibles (adresses mails des VMs de test).
4.6.2. Création d’un template d’e-mail
Exemple : “Alerte quota bofte mail”.

e Objet : [IT] Votre boite mail a presque atteint son quota

e Corps : e-mail reprenant les codes graphiques d’un vrai message (logo, signature, etc.), mais
en conservant quelques indices de phishing (adresse d’expéditeur suspecte, ton alarmiste,
fautes, etc.). [1][3]

12 /16

4.6.3. Création d’une landing page pédagogique

Plutot que de voler un mot de passe, la landing page affichera un message de sensibilisation :

e Titre : Exercice de sensibilisation a la sécurité

e Texte:
“Vous venez de participer a une simulation de phishing. Voici les indices qui auraient d{ vous
alerter:...”

e On peutyintégrer une liste des signaux d’alerte (URL, orthographe, urgence artificielle, etc.).

(3]

4.7. Vérification et tests

4.7.1. Tests techniques
e Ping /DNS:

o ping phishing.lab doit répondre.
o nslookup phishing.lab doit renvoyer 192.168.6.20.

o telnet smtp.lab.local 25
o Envoi de mail de test en ligne de commande (mail, swaks, etc.).

e GoPhish :

o Accés a l'interface admin.
o Création d’'une campagne test.

o Vérification des logs (/var/log/syslog, /var/log/mail.log).

4.7.2. Tests fonctionnels
e Envoi d’'une campagne vers les VMs clients.
e Réception des e-mails sur Outlook/Thunderbird.
e Clic sur le lien = redirection vers la landing page.
e Vérification des statistiques dans GoPhish :
o Mails envoyés.
o Mails ouverts.
o Clics.

o Saisies (si activées).

13/ 16

5. Anticipation des problémes pour la future mise
en production

5.1. Probléemes techniques fréquents

E-mails bloqués ou classés en spam :

o Cause : manque de SPF/DKIM/DMARC, réputation IP faible. [6][7]
o Prévention:
= Configurer SPF/DKIM/DMARC sur le domaine de production.
= Faire valider par I'’équipe Exchange/0365.
= Tester aupres de quelques boites de test avant un déploiement plus large.

Landing page inaccessible depuis I’extérieur :

o Cause : Firewall/Proxy, NAT non configuré.

o Prévention:
= Publication en DMZ ou sur VPS avec pare-feu maitrisé.
= Test depuis un poste externe a I'entreprise.

Incompatibilités réseau :

o Cause : Proxy d’entreprise, filtrage HTTPS, DPI.
o Prévention:

= Collaboration avec I'équipe réseau pour whitelist du domaine de test.

5.2. Problemes organisationnels

Refus ou réticence de la direction / RSSI :
. ’A “« N ”
o Risque d’étre pergu comme une “chasse aux sorcieres”.
o Solutions:
= Présenter clairement les objectifs pédagogiques.

= |Insister sur la bienveillance : on ne “punit” pas les utilisateurs, on les forme.

(3]

= Proposer une premiere campagne limitée a un petit échantillon volontaire.

5.3. Problémes juridiques (RGPD)

Collecte d’adresses mails professionnelles.
Collecte potentielle de comportements (clics, saisies).

Tragage des actions (logs).

14 /16

Points a respecter :

o Base légale : intérét légitime de sécuriser le Sl, en lien avec les obligations de I'employeur en
matiére de sécurité. [3]

e Minimisation : ne collecter que ce qui est nécessaire (clic, ouverture, etc.).
e Transparence : informer les salariés (charte informatique, note interne).
e Durée de conservation limitée : suppression des données individuelles aprés le débrief.

e Anonymisation / agrégation : privilégier les statistiques anonymisées par service ou
population.

6. Cadre éthique de la sensibilisation

Afin que la campagne ne soit pas vécue comme un “piege malveillant”, les regles suivantes sont
appliquées :
6.1. Pas de capture réelle de mots de passe

e Les landing pages ne stockent jamais les mots de passe saisis.

e |déalement, le formulaire est remplacé par un texte pédagogique des que |'utilisateur clique
ou tente de se connecter.

e Siun formulaire est techniquement utilisé, les champs sont anonymisés et immédiatement
détruits aprés la campagne.

6.2. Transparence et bienveillance
e Communication en amont (ou au minimum lors du débrief) expliquant :
o Les objectifs des simulations.
o Lerdle de chacun (DSI, RSSI, utilisateurs).
e Llesrésultats sont:
o Présentés de maniere anonyme (par département, profil, etc.).

o Utilisés pour organiser des formations ciblées, non des sanctions individuelles.

6.3. Conformité interne
e Alignement avec :
o Lacharte informatique de I'entreprise.
o Lereglement intérieur.

o Les directives du RSSI / DPO.

15/ 16

7. Conclusion

Ce projet a permis de :

e Concevoir une infrastructure locale compléte autour de GoPhish (VMs, DNS, SMTP, Nginx,
HTTPS), en environnement homelab, pour tester en toute sécurité un outil de simulation de
phishing.

e Anticiper les problématiques techniques (SMTP, DNS, filtrage, authentification des mails),
organisationnelles (validation par la direction et le RSSI) et juridiques (RGPD, cadre éthique).

e Préparer une montée en charge progressive vers une campagne de sensibilisation au
phishing dans I'entreprise (Ugecam BRPL), tout en conservant une approche pédagogique et
bienveillante.

Ce dossier technique peut servir :

e De base pour I'épreuve E4/E5 du BTS SIO SISR.
e De support pour présenter le projet a I’équipe SI / RSSI.

e De référentiel pour la mise en production et les évolutions futures (intégration avec SIEM,
dashboards de suivi, etc.).

Références

[1] Wikipédia. (2025). Hamegonnage. https://fr.wikipedia.org/wiki/Hameconnage

[2] Gophish Project. (2022). Installation | Gophish User Guide. https://docs.getgophish.com/user-
guide/installation

[3] CNIL. (2023). Sécurité des données personnelles et sensibilisation des employés.
https://www.cnil.fr

[4] Gophish GitHub Repository. (2025). gophish/gophish: Open-Source Phishing Toolkit.
https://github.com/gophish/gophish

[5] It-Connect. (2024). Publier GoPhish en HTTPS avec un reverse proxy Nginx. https://www.it-
connect.fr/gophish-reverse-proxy-nginx-et-certificat-lets-encrypt/

[6] SIDN. (2020). Hands-on: implementing SPF, DKIM and DMARC in Postfix.
https://www.sidn.nl/en/news-and-blogs/hands-on-implementing-spf-dkim-and-dmarc-in-postfix

[7] Leosmith. (2022). gophish setup tutorial. https://leosmith.wtf/blog/gophish-setup-tutorial.html

16 /16

https://leosmith.wtf/blog/gophish-setup-tutorial.html
https://www.sidn.nl/en/news-and-blogs/hands-on-implementing-spf-dkim-and-dmarc-in-postfix
https://www.it-connect.fr/gophish-reverse-proxy-nginx-et-certificat-lets-encrypt/
https://www.it-connect.fr/gophish-reverse-proxy-nginx-et-certificat-lets-encrypt/
https://github.com/gophish/gophish
https://www.cnil.fr/
https://docs.getgophish.com/user-guide/installation
https://docs.getgophish.com/user-guide/installation
https://fr.wikipedia.org/wiki/Hame%C3%A7onnage

	1. Introduction
	2. Cahier des charges
	3. Architecture cible
	4. Mise en place de l’infrastructure locale
	4.1. Préparation des machines virtuelles
	4.2. Installation de GoPhish
	4.3. Mise en place du reverse proxy Nginx + HTTPS
	4.4. Mise en place du serveur SMTP Postfix (lab)
	4.5. Mise en place du DNS local
	4.6. Configuration GoPhish (interface)
	4.7. Vérification et tests

	5. Anticipation des problèmes pour la future mise en production
	6. Cadre éthique de la sensibilisation
	7. Conclusion
	Références

